报告题目:Ill-posedness issue on the Oldroyd-B model in the critical Besov space
报 告 人:李金禄
报告时间:2025年4月19日上午9:00-10:00
报告地点: 格物楼528
报告摘要:
It is proved in \cite[J. Funct. Anal., 2020]{AP} that the Cauchy problem for some Oldroyd-B model is well-posed in $\B^{d/p-1}_{p,1}(\R^d) \times \B^{d/p}_{p,1}(\R^d)$ with $1\leq p<2d$. In this paper, we prove that the Cauchy problem for the same Oldroyd-B model is ill-posed in $\B^{d/p-1}_{p,r}(\R^d) \times \B^{d/p}_{p,r}(\R^d)$ with $1\leq p\leq \infty$ and $1< r\leq\infty$ due to the lack of continuous dependence of the solution.
报告人简介:
李金禄,男,副教授,硕士生导师。中山大学博士,广州大学博士后,入选江西省省级人才计划。主要从事非线性偏微分方程及相关问题的数学理论研究。在《Adv. Math.》、《J. Funct. Anal.》、《SIAM J. Math. Anal.》、《J. Differential Equations》、《J. Geom. Anal.》、《J. Nonlinear Sci.》等国际刊物发表学术论文50余篇;主持包括国家自然科学基金在内的省部级以上科研项目8项。